高三数学必学二要点整理

点击数:317 | 发布时间:2025-01-08 | 来源:www.ansufa.com

    高中三年级学生非常快就会面临继续学业或事业的选择。面对要紧的生活选择,是不是考虑了解了?这对于没社会经验的学生来讲,无疑是个困难的选择。怎么样度过这要紧又紧张的一年,大家可以从提升学习效率来着手!智学网高中三年级频道为各位同学整理了《高三数学必学二要点整理》,期望你好好学习,圆金色6月梦!

    1.高三数学必学二要点整理


    1、抛物线是轴对称图形。对称轴为直线

    x=—b/2a。

    对称轴与抛物线的交点为抛物线的顶点P。

    特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

    2、抛物线有一个顶点P,坐标为

    P(—b/2a,(4ac—b’2)/4a)

    当—b/2a=0时,P在y轴上;当Δ=b’2—4ac=0时,P在x轴上。

    3、二次项系数a决定抛物线的开口方向和大小。

    当a0时,抛物线向上开口;当a0时,抛物线向下开口。

    |a|越大,则抛物线的开口越小。

    4、一次项系数b和二次项系数a一同决定对称轴的地方。

    当a与b同号时(即ab0),对称轴在y轴左;

    当a与b异号时(即ab0),对称轴在y轴右。

    5、常数项c决定抛物线与y轴交点。

    抛物线与y轴交于(0,c)

    6、抛物线与x轴交点个数

    Δ=b’2—4ac0时,抛物线与x轴有2个交点。

    Δ=b’2—4ac=0时,抛物线与x轴有1个交点。

    Δ=b’2—4ac0时,抛物线与x轴没交点。X的取值是虚数(x=—b±√b’2—4ac的值的相反数,乘上虚数i,整个式子除以2a)

    2.高三数学必学二要点整理


    空间几何体表面积体积公式:

    1、圆柱体:表面积:2πRr+2πRh体积:πR2h

    2、圆锥体:表面积:πR2+πR[的]体积:πR2h/3V=abc

    5、棱柱S-h-高V=Sh

    6、棱锥S-h-高V=Sh/3

    7、S1和S2-上、下h-高V=h[S1+S2+^1/2]/3

    8、S1-上底面积,S2-下底面积,S0-中h-高,V=h/6

    9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

    10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh

    11、r-底半径h-高V=πr^2h/3

    12、r-上底半径,R-下底半径,h-高V=πh/3

    13、球r-半径d-直径V=4/3πr^3=πd^3/6

    14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh/6=πh2/3

    15、球台r1和r2-球台上、下底半径h-高V=πh[3+h2]/6

    16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4

    17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh/12,V=πh/15

    3.高三数学必学二要点整理


    空间中的平行关系

    1、直线与平面平行

    概念:直线和平面没公共点

    断定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面

    性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行

    2、平面与平面平行

    概念:两个平面没公共点

    断定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行

    性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;假如两个平行平面同时与第三个平面相交,那样它们的交线平行。

    3、常借助三角形中位线、平行四边形对边、已知直线作一平面找其交线

    4.高三数学必学二要点整理


    直线与平面有几种地方关系

    直线与平面的关系有3种:直线在平面上,直线与平面相交,直线与平面平行。其中直线与平面相交,又分为直线与平面斜交和直线与平面垂直两个子类。

    直线在平面内——有无数个公共点;直线与平面相交——有且只有一个公共点;直线与平面平行——没公共点。直线与平面相交和平行统称为直线在平面外。

    直线与平面垂直的断定:假如直线L与平面α内的任意一直线都垂直,大家就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。

    线面平行:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。

    直线与平面的夹角范围

    [0,90°]或者说是[0,π/2]这个范围。

    当两条直线非垂直的相交的时候,形成了4个角,这4个角分成两组对顶角。两个锐角,两个钝角。根据规定,选择锐角的那一对对顶角作为直线和直线的夹角。

    直线的方向向量m=,平面的法向量为n=,m,n夹角为θ,cosplayθ=/|m||n|,结果等于0。也就是说,l和平面法向量垂直,那样l平行于平面。l和平面夹角就为0°。

    5.高三数学必学二要点整理


    系统抽样

    1、系统抽样:

    把总体的单位进行排序,再计算出抽样距离,然后根据这一固定的抽样距离抽取样本。第一个样本使用简单随机抽样的方法抽取。

    K=N/n

    首要条件条件:总体中个体的排列对于研究的变量来讲,应是随机的,即没有某种与研究变量有关的规则分布。可以在调查允许的条件下,从不一样的样本开始抽样,对比几次样本的特征。假如有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

    2、系统抽样,即等距抽样是实质中最为常见的抽样办法之一。由于它对抽样框的需要较低,推行也比较简单。更为要紧的是,假如有某种与调查指标有关的辅助变量可供用,总体单元按辅助变量的大小顺序排队的话,用系统抽样可以大大提升估计精度。

    6.高三数学必学二要点整理


    空间两条直线只有三种地方关系:平行、相交、异面

    1、按是不是共面可分为两类:

    共面:平行、相交

    异面:

    异面直线的概念:不同在任何一个平面内的两条直线或既不平行也不相交。

    异面直线断定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

    两异面直线所成的角:范围为esp.空间向量法

    两异面直线间距离:公垂线段esp.空间向量法

    2、若从有无公共点的角度看可分为两类:

    有且仅有一个公共点——相交直线;

    没公共点——平行或异面

    直线和平面的地方关系:

    直线和平面只有三种地方关系:在平面内、与平面相交、与平面平行

    ①直线在平面内——有无数个公共点

    ②直线和平面相交——有且只有一个公共点

    直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

  • THE END

    声明:本站部分内容均来自互联网,如不慎侵害的您的权益,请告知,我们将尽快删除。

专业院校

返回顶部

Copyright©2018-2024 国家人事网(https://www.zbxggc.com/)
All Rights Reserverd ICP备18037099号-1

  • 国家人事网微博

  • 国家人事网

首页

财经

建筑

医疗